If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+6t+1=0
a = 1; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·1·1
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{2}}{2*1}=\frac{-6-4\sqrt{2}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{2}}{2*1}=\frac{-6+4\sqrt{2}}{2} $
| 2a+7=4+3 | | 5x+12=2-x | | 5x*x-104x+620=0 | | 17y^2-33-16y=0 | | 2a+3=8+4a | | 4(2x-3=-36 | | 1800=2(4x+6x) | | 5x*x-54x-225=0 | | 8x+12x=1800 | | 3x+8-8x+5=-5x+13 | | 2a+7=4+3a | | 7a-4=9+a | | 17x^2-8x-48=0 | | x/5x=4200 | | x5x=4200 | | 5x*x+54x+225=0 | | 8x-74=5-8x | | 2*5^2-x=5+5^x | | 9^m+27-2m=28 | | 3x-5/4=x+3/2 | | 12x=1804x= | | 6x-15=5x+5 | | -2(3+4x)=-5x+6 | | 4-4x=9-12 | | 1-2h=8h | | 3t-2(6t-3)=42 | | 5y+16=0 | | -3(2q+1)=21 | | x/9=164 | | 2n/7=8 | | 1,4-0,8(x+2)+2,5(x-1)=10,9 | | 3(x+7)+2(9-x)=60+4(x-5) |